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SECTION I
SUMMARY

.. _ e
.
< R S L TS DR

A.  STUDY OBJECTIVES AND SCOPE

The major cbjectives of this study program were to provide design charac-
ter1st1cs, parametric data and identify technology requirements for advanced
engines to be used on mixed-mode orbit-transfer vehicles (0TV).

R

foaq et fued  Gou g Peuy

Three baseline engine concepts (tripropellant, plug cluster, and dual-
expander) were studied. Oxygen (02), kerosene (RP- 1? and hydrogen (H2) were
evaluated as the propellants for these engines. A baseline Mode 1 thrust
level of 88,964N (20,000 1bs) and a thrust split of 0.5 were preselected.
(Thrust sp]it is defined as the ratio of the 02/RP-1 thrust to the total

- engine thrust.) This established the base point for parametric evaluations.
i

)

» e
3

¢
ar

To accomplish the study program objectives, the effort was divided into
four technical tasks plus a reporting task. In Task I, the properties
and/or theoretical performance of the propellants and propellant combinations
‘- were determined over a parametric range. Task II involved the evaluation of

thrust chamber cooling methods for each of the concepts to determine the
“- maximum attainable chamber pressures within the constraints of low cycle
‘ thermal fatigue and propellant properties. Upon completion of Task II,
cooling methods were selected and the operating parameters for each of the
baseline engines were updated for use in the remaining effort. In Task
; 111, cycle power limits were established, point design chamber pressures
: were selected, and delivered performance, weight and envelope dimensions
were deteremined for each of the baseline engines. Using the Task III
results as a base, parametric analyses were then conducted over ranges of
thrust Tevel, thrust split and Mode 1 area ratio in Task IV to provide the

engine data and descriptions necessary for mixed-iode orbit-transfer-
vehicle studies.

' B.  RESULTS AND CONCLUSIONS

Simplified engine cycle schematics of the concepts selected as baselines
and for parametric analyses are shown on Figures 1 through 6.

The tripropellant engine uses a staged combustion engine cycle and a
conventional bell nozzle. To conserve space in the shuttle payload bay,
an extendible/retractable nozzle extension is used. Thnree preburners are
used to drive theturbines. Oxygen/hydrogen fuel-rich gas drives the hydro-
gen turbopump, oxygen/hydrogen oxidizer-rich gas drives the oxygen turbopump
and oxygen/RP-1 fuel-rich gas drives the RP-1, turbopump. The exhausts of all
turbines are burned in the main thrust chambe¥ during Mode 1 operation.
Only the 02/H2 propellants are burned during Mode 2 operation.

2 - PRECEDING PAGE BLANK NOT FILNE)
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I, B, Results and Conclusions (cont.)

The dual-expander engine burns oxygen as the oxidizer and RP-1 and
hydrogen as the fuels in Mode 1. Some of the oxygen and all of the RP-1
are delivered to a central thrust chamber injector as iiquids. These pro-
pellants are combusted and partially expanded in a conventional bell nozzle.
The rest of the oxygen and the hydrogen are combusted in preburners. An
oxidizer-rich preburner is used to provide the oxygen turbopump drive gases
and a fuel-rich preburner is used to provide the RP-1 and hydrogen turbopump
drive gases. The turbine exhaust gases are delivered to an annular combus-
tion chamber. Expansicn of the 02/Hy combustion products occurs in a forced
deflection nozzle extension along with the complete expansion of the 02/RP-1
center core combustion gases. During Mode 2 operation, the center thrust
chamber is inactive and only the 02/H2 combustion gases are expanded in the
forced deflection nozzle. This substantially increases the Mode 2 area
ratio.

The plug cluster engine uses 02/Ho and 02/RP-1 thrust chamber modules
clustered around a central plug of zero isentropic length with the module
exits touching. The oxygen/hydrogen system employs an expander drive cycle
and the oxygen/RP-1 turbopumps are driven by fuel-rich oxygen/RP-1 gas-
generator. Some of the heated hydrogen is used as hase-bleed to improve the
base thrust contribution in both Mode 1 and Mode 2. The 02/RP-1 fuel-
rich turbine exhaust products are expanded through a 5:1 nozzle. A1l of
the modules fire in Mode 1 operation while only the 02/H; modules operate
during Mode 2.

Hydrogen was selected as the coolant for the tripropellant and dual-
expander engines and the LOX/LH2 module of the plug cluster. Hydrogen cooled
tripropellant engines are practical for the entire chamber pressure range of
34 to 136 atm (500 to 2000 psia) and thrust split range of 0.4 to 0.8
investigated. Dual-expander engines are cooling limited and the maximum
operating chamber pressures were defined as a function of thrust split at
a baseline thrust of 88,964N (20,000 1b) as follows:

Mode 1 Chamber Mode 2 Chamber

Thrust Pressure, Pressure,
Split atm (psia) atm (psia)
0.4 88.4 (1300) 44 .2 (650)
0.5 74.8 (1100) 37.4 (550)
0.6 61.2 (900) 30.6 (450)
0.8 13.6 (200) 6.8 (100)

It may be possible to raise these chamber pressure Timits if advanced
technology chambers using a combination of regenerative and transpiration
cooling are considered. However, this was beyond the study scope.

L4
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I, B, Results and Conclusions (cont.)

Cooling of the LOX/LH> plug cluster engine module was practical over
tte entire chamber pressure range of 20.4 to 68 atm (300 to 1000 psia)
itvestigated. However, both oxygen and RP-1 cooling of the LOX/RP-1
. odule was found to be impractical over the entire chamber pressure range.
Uxygen cooling of the module in the plug cluster engine is impractical
because of phase changes at low pressures and shifts in transport properties
near the critical temperature and pressure points at the higher pressures.
RP=1 cooling uf these modules results in excessive bulk temperature rises
bi'cause of wall temperature limitations imposed in order to prohibit cracking, :
g-ming and coking of the RP-1 in the coolant channels. The plug cluster :
s udy proceeded assuming that if some of the impurities were removed from the
Ri -1, the coolant bulk temverature would not be limiting. A baseline LOX/

RF=1 chamber pressure of 20.4 atm (300 psia) was selected for the parametric
evaluations.

With the cooling evaluation results as a foundation, baseline engine
operating points were selected. The baseline engine weight, performance
and envelope data for each of the engine concepts were established and
are summarized on Tables I, II and III. Parametric studies were then con-
ducted around these baselines. The parametric data is presented in
Section VI for a thrust range of 66.7 kN to 400 kN (15,000 to 90,000 1b),

thrust splits from 0.4 to 0.8, and overall Mode 1 area ratios from 200:1
to at least 600:1.
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SECTION II
INTRODUCTION

A.  BACKGROUND

From the early to mid-1970's, the NASA and DOD sponsored a number of
studies which examined both interim and so-called full capability vehicles
for the inter-orbit transfer of payloads. These studies, which considered
solid, storabie, and cryogenic propellants for main engine propulsion,
generally cc..cluded that a high area ratio, high pressure staged combustion
cycle engine in a hydrogen-oxygen stage offered the highest payload capa-
bility. Several vehicle and propulsion system concepts, however, did not
receive in-depth study as candidates in this early orbit-transfer-vehicle
(0TV) effort. Not considered, for example, were the plug cluster engine
and the more recent mixed-mode propulsion concept. Work was initiated in
1976 (Contract NAS 3-20109) to provide plug cluster engine data for use in
future hydrogen-oxygen OTV studies. With regard to mixed-mode propulsion,
studies of single-stage-to-orbit (SSTO) vehicles conducted by both industry
and NASA have shown that mixed-mode propulsion offers significant benefits
in vehicle performance and size for advanced earth-to-orbit transportation
systems. This suggests that mixed-mode propulsion might also be beneficial
in orbit-transfer vehicles.

Mixed-mode propulsion corsists of two separate modes (herein called
Mode 1 and Mode 2) of combustion in the same propulsive stage. This can be
accomplished either sequentiaily or in parallel. During a Mode 1 parallel
burn, a high density fuel, like kerosene (RP-1) or monomethylhydrazine (MMH),
is burned together with oxygen and hydrogen. Only the high density fuel and
oxygen are burned during Mode 1 of the series concept. Oxygen {02) and
hydrogen (H2) are used in the Mode 2 burn of both concepts. In Reference 1,
Beichel and Salkeld compare an 02/MMH/H2 mixed-mode OTV with a reference 03/H2
OTV which utilized the RL10-IIB engine (standard RL10-3 with addition of idle-
mode capability and an extendable nozzle to an area ratio of 205:1). Results
showed that the mixed-mode 0TV was 60% shorter than the reference design at
no penalty in payload weight or 43% shorter with a geosynchronous payload
increase of 21%. The cited improvements were accomplished by the application
of the mixed-mode propulsion principle in a high pressure oxygen-coolzd dual-
fuel engine (Mode 1 area ratio = 130:1, Mode 2 area ratio = 400:1), use of a
1ightweight columbium rolling diaphragm nozzle extension, an 02/H2 mixture
ratio of 7:1, and storage of the oxygen in a toroidal tank of spherical seg-
ments. The work of Beichel and Salkeld was extended to include 02/RP-1/H3.
These ALRC in-house efforts showed that the OTV length could be reduced by
27% and the vehicle dry weight reduced by 19% for essentially no penalty
in payload weight. A1l studies have shown that the requirements for a small
size, high performance OTV drives the mixed-mode propulsion to high chamber
pressures and large nozzle area ratios.

The purpose of this work was to provide the data necessary for the study
of orbit-transfer-vehicles utilizing mixed-mode propulsion. The effort

13
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11, Introduction (cont.)

invo]ved parametric analyses to establish engine data and descriptions and
the identification of technology needs in the propulsion area.

B. OTV ENGINE REQUIREMENTS

The requirements for the mixed-mode OTV engines used in this study are
summarized on Table IV. In addition, the study was conducted assuming
curre?t}y achievable component performance levels and currently available
materials.

C. APPROACH

A summary of the study program effort is shown on Figure 7. This
figure shows the major past study efforts which provided basic data and
inputs to this effort, the study tasks conducted and the outputs obtained.
Much of the basic propellant data, properties and theoretical performance
was available from Contract NAS 3-19727 (Reference 2) to support this study.
The results of work performed for Contract NAS 3-20109 (Reference 3) were
used to establish the plug cluster engine parameters such as, plug isentropic
length, module gap ratio and module nozzle expansion ratios.

The engine concepts described by Figure 8 were analyzed in this study.
Those baseline engine guidelines and parameters that could be identified prior
to the initiation of all detailed analyses are shown on Tables V, VI and
VII. A1l items marked TBD (to he determined) were established during the
study by conducting the tasks which follow.

° Task I - Propellant Properties and Performance

This task generated fundamental data necessary for the performance
of the remaining tasks.

° Task Il - Cooling Evaluation
This task established the best coolant for each of three baseline
engines and determined the maximum attainable chamber pressure on the basis
of coolant pressure drop or propellant property limits.
° Task II1 - Baceline Engine Cycle, YWeight and Envelope Analysis
This task consisted of engine cycle power balance analysis, gngine
delivered performance evaluations, engine and component weight estimation,
and engine envelope analysis for three baseline engine concepts selected
on the basis of the Task I and II results.
° Task IV - Engine Performance, Weight and Envelope Parametrics

Engine delivered performance weight and envelope d *ta were generated
over parametric ranges of thrust, thrust-split and Mode 1 area ratio for each
of the selected engine concepts.

14
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TABLE IV. - MIXED-MODE OTV ENGINE REQUIREMENTS

Propellants:

Oxidizer
Mode 1 Fuel

Mode 2 Fuel

Propellant Iniet Temperature:

Oxygen Boost Pump
RP-1 Boost Pump

Hydrogen Boost Pump

NPSH at Boost Pump Inlet (full thrust):

Oxygen
RP-1

Hydrogen

Service Life Between Overhauls:

Service Free Life:

Oxygen
RP-1

Hydrogen

90.4°K (162.7°R)
298°K (537°R)

21°K (37.8°R)

0.61 m (2 ft)
13.7 m (45 ft)

4.57 m (15 ft)

300 thermal cycles or
10 hours accumulated
run time

60 thermal cycles or
2 hours accumulated
run time

15
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TABLE V. - BASELINE TRIPROPELLANT ENGINE GUIDELINES

MODE 1 MODE 2

PROPELLANTS: OXIDIZER 02 U, 02

FUEL RP-1 H2 Hy
MIXTURE RATIO (0/F) 3.1 7.0 7.0
CHAMBER PRESSURE TBD TBD
VACUUM THRUST, N (1bf) 88,964 (20,000) TBD
THRUST SPLIT (02/RP-1 THRUST) .5 -

TOTAL THRUST
VACUUM IMPULSE, SEC. TBD TBD
DRIVE CYCLE STG. COMB.  5TG. COMB. STG. COMB.
NOZZLE TYPE 907% BELL 90% BELL
NOZZLE EXPANSION RATIO 400:1 40C:1
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TABLE VI. - BASELINE DUAL-EXPANDER ENGINE GUIDELINES

MODE 1 MODE 2

PROPELLANTS: OXIDIZER 02 02 02

FUEL RP-1 H2 H2
MIXTURE RA™TO (O/F) 3.1 7.0 7.0
CHAMBER PRESSURE 78D 18D 18D
VACUUM THRUST, N (1bf) 88,964 (20,000) T8D
THRUST SPLIT (02/RP-1 THRUST) .5 -

TOTAL THRUST
VACUUM IMPULSE, SEC TBD T8D
DRIVE CYCLE TBD 78D TBD
NOZZLE TYPE BELL Expansion- Expansion-

Deflection Deflection

NOZ7LE EXPANSION RATIO 200 T8D

19
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TABLE VII. - BASELINE PLUG CLUSTER ENGINE GUIDELINES

MODE 1 MODE 2

PROPELLANTS: OXIDIZER 0, 0, 0,

FUEL RP-1 Hy H,
MIXTURE RATIO (O/F) 3.1 7.0 7.0
CHAMBER PRESSURE TéD TBD T8D
VACUUM THRUST, N (1bf) 88,964 (2n,000) T8D
THRUST SPLIT (OZ/RP-l THRUST) .5 -

TOTAL THRUST
VACUUM IMPULSE, SEC. TBD TBD
DRIVE CYCLE Gas Gen. Expander Expander
NUMBER OF MODULES 5 5 5
MODULE NOZZLE TYPE 907 BELL 90% BELL 90% BELL
MODULE NOZZLE EXPANSION RATIO T8D TBD TBD
MODULE GAP RATIO (GAP BETWEEN 0 1

MODULES/MODULE EXIT DIA)

CLUSTER EXPANSION RATIO TBD T8D
PLUG ISENTROPIC LENGTH, % T30 TBD

PR
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SECTION III
TASK I - PROPELLANT PROPERTIES AND PERFORMANCE

A. OBJECTIVES AND GUIDELINES

The objectives of this task were to provide propellant and combustion
gas property data, and theoretical performance for the propellants and
propellant combinations considered in this study. To accomplish these
cbjectives, 'iterature surveys and analyses were conducted. Much of the
propellant property data is readily available in the literature and the best
references are cited herein.

The logic diagram ard variables considered in conducting this task are
shown on Figure 9. As noted by the figure, much of the basic propellant
property data was already available from Contract NAS 3-19727 (Ref. 2).

In addition, combustion product and theoretical performance data available
from Contracts NAS 3-19727 and NAS 3-20109 (Ref. 3) were extended to meet the
study requirements.

The thermodynamic and transport property data for the combustion products
were obtained from the One-Dimensional Equilibrium Computer Program with
Transport Properties (TRAN 72), described in Reference 4. This computer
program was obtained from NASA/LeRC and includes ODE and frozen specific
impulse and characteristic velocity data in addition to the extensive com-
bustion gas transport property output.

Main chamber theoretical performance data was alsu generated using
the previously referenced TRAN 72 computer program. The ODE performance
portion of the program is equivalent to the JANNAF one-dimensional equili-
brium program.

B.  PROPELLANT PROPERTY DATA

The physical and thermal property data for oxygen, RP-1, and hydrogen,
were assembled for Contract NAS 3-19727 (Ref. 2). Properties of these
various propellants and their data sources are:

Oxygen - References 5,6,7,8
Hydrogen - Reference 9
° RP-1 - References 10,11

The data is summarized on Table VIII.
In addition to these data, Reference 2 presents data on the proveilant

operational characteristics (i.e., safety, availability, cost handling,

chem;cal stability, material compatibility, thermal stability, and corrosive-
ness).

21
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TABLE VIII. - PROPERTIES OF CANDIDATE PROPELLANTS

Oxygen Hydrogen I RP-1
Formula B 0, Hy WHoho 3
Molecular Weight 31.9988 2.01594 173.5151
e b ZITT
Freezing Point, °K 54,372 13.835 224.8
o ‘)' (-361.818) (-434.767) (-55)
8oiling Point, °K 90.188 20.268 1492.6
{°F) (-297.346) (-423.187) (427)
Critical Temperature. °K Tisa.581 32.976 679
(°F) (-181.433) (-400.313) {763)
Critical Pressure, MN/m 5.043 1.2928 2.344
(psia) (731.4) (187.81) (340)
Critical Density, kg/m 436.1 31.43 --
{1b/£t3) (27.23) (1.962) -
Vapor Pressure 2
at 298.15°K, kN/m - -- 1.8
(at 77°F, psia} .- i - {.26)
Density, liquid B a
at 298.15°K, kg/m’ n40.8° 70.78 800
{at 77°F, 1b/ft3) (r.23) {a.419) (49.94)
Heat Capacity, liquid 2
at 298.15°K, J/g-°K 1.696° 9,690 1.98
(at 77°F, Btu/1b-°F) (.405) (2.316) (.474)
Viscosity, iiquid 2 a
at 298.15°K, mN/m .1058 .oad 1.53
{at 77°F, b /ft-se:) (1.316x10-4) (.887x10+5) {1.04x10-3)
Thermal Conductivity, liq. 2
at 298.15°K, W/m-°K 5158 .0989 137
{at 77°F, Btu/ft-sec-°F) (2.833x10-5) {1.589x10-5) (2.2x10-5)
Heat of Formation, Niquid a a
at 298.12°K, kcal/mo) -3.003 -2.134 .6.2°
(at 77°F, Btu/1b) {-124.0} (-1905) (-796)

a At NB?
b keal/g CH, unit
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111, Task 1 - Propellant Properties and Performance (cont.)

C. T:RUST CHAMBER COMBUSTION GAS PROPERTIES AND THEORETICAL PERFORMANCE
DATA

This subtask consisted of the parametric evaluation of one-dimensional
equilibrium (ODE) specific impulse, gas stagnation temperature, character-
istic exhaust velocity, molecular weight, thermal conductivity, dynamic
viscosity, specific heat, specific heat ratio (y), and Dittus-Boelter factor
for the L02/RP-1/LH2 tri-propellant combination. The parametric mixture
ratio range varied from 3.1:1 (LO2/RP-1 only) to 7.0:1 (LO2/LH2 only).
Chamber pressure values included in the study were 20.4, 34, 68, and 136 atm
(300, 500, 1000 and 2000 psia). ODE specific impulse was also evaluated
over an expansion area ratio range from 1:1 to 3000:1. The TRAN 72 computer
program (Ref. 4) was used to calculate the ODE TCA performance and gas
properties. Propellant molecular formulas and heats of formation used
were presented in Table VIII.

The data were calculated for hydrogen to total fuel flow ratios (fuel
fractions) of 0, 0.2, 0.4, 0.6, 0.8 and 1.0 and the following overall
oxidizer to total fuel mixture ratios:

Fuel Overall
Fraction, Mixture Ratio,
MRf MR0
0.0 3.10 (LOX/RP-1 only)
0.2 3.88
0.4 4.66
0.6 5.44
0.8 6.22
1.0 7.00 (LOX/LH2 only)

The rationale for the selection of the overall mixture ratio points
for each of the fuel fractions is described in the following paragraph.

The theoretical one-dimensional vacuum specific impulse was calculated
for the LOX/LHp/RP-1 tripropellant combination at an area ratio of 400:1 and
a chamber pressure of 68 atm (1000 psia). This is shown for the various
fuel fractions on Figure 10. Both maximum Ig and maximum bulk density
specific impulse occur at a mixture ratio 3.1 for LOX/RP-1 at this high
area ratio. Hence, this mixture ratio was selected for LOX/RP-1 operation.
The contract Statement of Work specified a mixture ratio of 7.0 for the
LOX/LH» Mode 2 operation. This selection is based upon analyses such as

24
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IS vac,

ODE

LOX/LHZ/RP—I
—_— W
hRo = Lox i
"LH2 * Wepo
"
MR, = LK,
W + W
LH, © "RP-1
e = 400:1

Pc = 68 atm (1000 PSIA)

MR,f = 1.0

(Lox/LH? only)

380 § NRf = 0 (Lox/Ri’~-1 only)
370 k-
ln__k [ { { | | ! R e
2.5 3. 4.5 4.4 6,5 7.5 8.5 9.5 10.5 1i1.5
MR

Figure 10. Tri-Propeilant ODE Specific Impulse
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I11, C, Thrust Chamber Combustion Gas Properties and Theoretical Performance
Data (cont.)

Beichel's and Salkeld's (Ref. 1) which conclude that some penalty in 0/hp
engine performance is warranted to obtain a higher propellant bulk density.
Therefore, as higher percentages of H2 are put into the tripropellant system,
it is desirable to move slightly off peak performance. This is represented
by the line passing through the various fuel fraction performance curves.

The equation for this line is a function of the mixture ratios for the
LOX/RP-1 and LOX/LH2 systems as well as the fuel fraction. For the

selected mixture ratios:

MR, = 3.1 (1 - MRg) + 7.0 (MR)

MRo

Overall mixture ratio

W\ ox
wLH2 + Wpp_y

MRf Fuel Fraction

ODE specific impulse is plotted versus area ratio for each fuel frac-
tion calculation point on Figures 11, 12, 13, 14, 15 and 16. The very high
area ratio data was established in an attempt to cover all possible points
that might result for the various engine concepts over a wide thrust split
range.

The TCA combustion gas property data is shown on Table IX. The
symbols used on this table are:

PC = chamber pressure

MR0 = overall mixture ratio

MR = fuel fraction

C* = characteristic exhaust velocity

T0 = combustion temperature (gas stagnation temperature)
M = molecular weight

v
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11, C, Thrust Chamber Combustion Gas Propcrties and Theoretical Performance
Data (cont.)

Kf = thermal conductivity

Yo ratio of specific heats, equilibrium

Yy < ratio of specific heats, frozen

" = dynamic viscosity

Cpe = specific heat at constant pressure, equilibrium
Cpf = specific heat at constant pressure, frozen

Dbf = Dittus-Bolelter factor

D. PREBURNER COMBUSTION GAS PROPERTIES AND PERFORMANCE DATA

This subtask consisted of calculating the combustion gas properties
for fuel-rich and oxidizer-rich L02/RP-1 and LO2/LH2 preburner operation.
These data were developed over a chamber pressure range from 20.4 to 408 atm
(300 to 6000 psia) and mixture ratio ranges corresponding to gas temperatures
between at least 700 tc 1367°K (1260 to 2460°R).

The data presented in this report is a compilation of results obtained
during this program and applicable data for pressures of 136 to 408 atm
(2000 to 6000 psia) developed during a similar task on the Advanced High
Pressure Engine Study, Contract NAS 3-19727 (Ref. .2). The LO2/RP-1 pre-
burner gas property data presented in this reference at pressures of 136,
272 and 408 atm (2000, 4000, 6000 psia) was expanded to the lower chamber
pressures of 20.4, 34, and 68 atm (300, 500, and 1000 psia) used in this
study. No propellant pre-heating was allowed for since Hp was the baseline
TCA coolant for this study. The non-equilibrium performance of the fuel-
rich LOp/RP-} performance was accounted for as described in Ref. 2. Also,
the L02/LH2 preburner gas property data presented in the reference was
verified as accurate for the 20.4 to 68 atm (300 to 1000 psia) pressure
range. Therefore, the LO2/LHp data is valid for all pressures from 20.4
to 408 atm (300 to 6000 psia).

Study preburner gas properties were alsc calculated with the TRAN 72
computer program (Ref. 4). LO2/RP-1 preburner gas properties are tabulated
in Table X. The symbols used on this table were defined in Section III,C.
The stagnation temperature, characteristic exhaust velocity, molecular weight
cnd specific heat racio data shown on this table were adjusted from their ODE
values for the LO2/RP-1 fuel-rich preburner data. The adjusted Ty and C*
data along with molecular weight and specific heat ratio are plotted in
Figure 17. This adjustment accounts for the empirically observed non-
equilibrium performance of fuel-rich hydrocarbon/oxygen mixtures. Efficiency
factors were developed versus equivalence ratio, as described in Ref. 2, and
used to predict Ty and C* values at the stated chamber pressures.

L02/LH2 preburner data were also calculated at chamber pressures of
20.4, 34 and 68 atm (300, 500, and 1000 psia). These data agreed with
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III, D, Preburner Combustion Gas Properties and Performance Data (cont.)

previous data developed for the 136 to 408 atm (2000 to 6000 psia) pressure
range. The LO2/LH2 preburner data is shown on Table XI. It was concluded
that the LO2/LH2 preburner performance curves presented in Ref. 2 were
valid for the parametric pressure range of this study.
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SECTION IV
TASK IT - COOLING EVALUATION

A. OBJECTIVES AND GUIDELINES

The primary objective of this task was to determine the relative capa-
bility of oxygen, RP-1, and hydrogen to cool the thrust chamber and nozzle
of the tripropellant, plug cluster, and dual-expander OTV engine concepts.
Secondary objectives were to: (1) establish cooling methods and associated
power cycles for the dual-expander engine concept, and (2) define the geometry
of the thrust chamber and nozzle for each of the baseline 0TV engine concepts.

Parametric hydraulic, heat transfer and lTow cycle fatigue analyses were
conducted over the following ranges of chamber pressure and thrust split.

Chamber Pressure Thrust
Engine Concept atm (psia) Split

Tripropellant 34 to 136 (500 to 2000) .4 to .8
Plug Cluster 20.4 to 68 (300 to 1000) .5
Dual-Expander 34 to 136 (500 to 2000) .4 to .8

The relative merit of the various coolants considered (Figure 8)
were evaluated on the basis of attainable chamber pressure, as reflected
in the coolant pressure drop. This evaluation was conducted within the
constraints of the study criteria listed in Table XII and consideration of
the potential problems and limitations such as coking of RP-1 and instabilities
in subcritical oxygen heat exchangers.

The Task II guidelines provided by NASA/LeRC are summarized on Table XII
and Figures 18 through 21. Rectangular channel construction was specified in
the high heat flux portion of the chambers using a zirconium-copper alloy.
The channel dimension and wall thickness 1imits are presented on Table XII.
Figures 18 through 21 show the zirconium-copper properties used in this
study.

The cooling methods and asso:iated power cycles evaluated for the tri-
propellant and plug cluster concepts are shown on Figures 22 through 26.
These concepts were defined by the contract statement of work. The dual-
expander concept was defined during the study and is described in the
next section. As shown by the figures, the baseline plug cluster concept
is regeneratively cooled. The tripropellant engine is regeneratively
cooled to a nozzle area ratio corresponding to the point where a radiation
cooled nozzle can be utilized. This transition area ratio was established
during the study.

4



TABLE XII. - COOLANT EVALUATION STUDY CRITERIA

Coolant Inlet Temperature

Hy = 50°K (90°R)
0, - 1M (200°R)
RP-1 - 311°K (560°R)

Coolant Inlet Pressure

Staged Combustion Cycle: 2.25 times chamber press.
Gas Generator Cycle: 1.8 times chamber press.
Expander Cycle: 2.25 times chamber press.

° Service Life: 300 cycles times a safety factor of 4

High heat flux portion of chamber shall be of nontubular construction
with the following dimensional limits:

Minimum Slot Width
Maximum Slot Depth/Width
Minimum Web Thickness
Minimum Wall Thickness

0.762 mm (.03 in.)

0.762 mm (.03 in.)
0.635 mm (.025 in.)

nua uan
-
Ing
o
—l

Material (nontubular portion): Copper alloy (Zirconium Copper) con-
forming to properties given in Figures 18 through 21

Maximum Coolant Velocii

tiquid: To Be Determined
Gas: To Be Determined

Possible Benefit of Carbon Deposition on Hot Gas Wall shall be Neglected
Coking Limit
RP-1 Coolant Side Wall Temperature = 589°K (600°F)
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IV, Task II - Cooling Evaluation (cont.)

B.  DUAL-EXPANDER ENGINE CONCEPT DEFINITION

The dual-expander engine concept analyzed during this study was defined
and is shown schematically on Figures 27 and 28.

The dual-expander engine burns oxygen as the oxidizer and RP-1 and
hydrogen as the fuels in the tripropellant Mode 1. Some of the oxygen and
all of the RP-1 are pumped to high pressure and delivered to a central
thrust chamber injector as liquids. These propellants are combusted and
partially expanded in a conventional bell nozzle extension. The rest of the
oxygen and the hydrogen are combusted in preburners. An oxidizer-rich pre-
burner is used to provide the oxygen turbopump drive gases and a fuel-rich
preburner is used to provide the RP-1 and hydrogen turbopump drive gases.
The turbine exhaust gases are delivered to an annular combustion chamber.
Expansion of the Ongz combustion products occurs in a forced deflection

nozzle extension along with the complete expansion of the 0,/RP-1 center
core combustion gases.

During Mode 2 operation, the center thrust chamber is inactive and
only the 02/Ha combustion gases are expanded in the forced deflection
nozzle. This substantially increases the Mode 2 area ratio.

The statement of work specified a baseline thrust of 88964N (20,000
1b) a thrust split of 0.5 and a Mode 1 nozzle area ratio of 200:1 for the
dual-expander engine. In addition, the cooling evaluation was performed

for a thrust chamber pressure range of 34 to 136 atm (500 to 2,000 psia)
and thrust splits from 0.4 to 0.8.

To establish the dual-expander engine geometries, it was necessary to
define the individual system area ratios and Mode 2 engine area ratio for the
fixed baseline Mode 1 area ratio of 200:1. The foliowing sketch and equations
show the areas, area ratios and interrelationships.
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g .
1
a Ea
| R )
KEL + 1
} t,
: where:
9 e, = Mode 2 Area Katio = Ac/A¢2

ey = Mode 1 LOX/RP-1 Area Ratio = Ap1/At)

€y = Mode 1 LOX/LH2 Area Ratio = Apa/A¢o

€ = Mode 1 Area Ratio (LOX/RP-]/LHZ) = Ag/(Ag1 + A¢2)
Ay = Throat Area LOX/RP-1 Nozzle
At, = Throat Area LOX/LH, Nozzle

Equations (2) and (3) can be approximated by:

Y

% = 0=Fs FS)( f1 % e ()

? 2 (T““‘"“)(PCZ) * e

"o

= (5)
(] - FS)(P ) +1

where:
FS Thrust Split
Pc2 = LOX/LH2 Chamber Pressure
P LOX/RP-1 Chamber Pressure

"

cl

For a fixed Mode 1 engine area ratio, numerous values of e and ¢ can
be chosen to satisfy Equation (5). However, the nozzle exit pressures at
€l and €2 must be equal and this closes the solution providing that the
ratio of the LOX/LHy> and LOX/RP-1 system pressures are known.
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IV, B, Dual-Expander Engine Concept Definition (cont.)

Preliminary heat transfer analysis indicated that it is desirable to
maintain a 0.5 ratio of the LOX/LHp system chamber pressure to LOX/RP-1
system chamber pressure. This is based upon maintaining approximately
equivalent throat heat fluxes in the annular and bell nozzles. This was
used throughout the rest of the coolant evaluation study and more detailed
thermal analyses (Section IV,E,5) verified this assumption.

Based upon the foregoing analysis, nozzle area ratios can be defined
for all modes of operation as a function of thrust split. Typical results
are displayed on Figure 29 for an overall Mode 1 (tripropellant operation)
area ratio of 200:1.

C. THRUST CHAMBER ASSEMBLY (TCA) GEQMETRY DEFINITIONS

Thrust chamber geometry analyses were conducted to define the chamber
Tength and contraction ratio for the tripropellant, plug cluster and dual-
expander engines over the parametric design ranges. The results of these
analyses are summarized on Table XIII. A brief description of the
geometry analysis conducted for each engine concept follows.

1.  Tripropellant Engine

The baseline tripropellant engine concept utilizes a staged

combustion cycle comprised of parallel 0p/Hy (Hprich), 02/H2 (Ozrich),
and 02/RP-1 (RP-1 rich) preburners and a gas/gas injected primary thrust
chamber. In Mode 1, all three preburners operate. The TCA is hydrogen
cooled, and the total preburner flow rates are inlet to the injector.
In Mode 2, the 0p/RP-1 (RP-1 rich) preburner is shutdown. TCA gas condi-
tions were estaglished to provide input conditions for a gas/gas mixing
performance analysis which was used to establish chamber length require-
ments to meet an ERE (energy release efficiency) goal of 98%.

Injector energy release efficiency was evaluated as a function of
chanber length (L'), chamber pressure (Pc), chamber contraction ratio (e¢),
and injector pressure drop using a simplified gas/gas mixing model (Ref. 12).
The analysis was initiated by selecting an initial design point and evaluating
injector ERE as a function of chamber length for a shear coaxial injector.
The shear coaxial injector was selected on the basis of analysis and evalua-
tions conducted for the Advanced High Pressure Engine Study Reference 2).
The chamber length study was conducted for a constant thrust per element (F/E)
of 703N (158 1bf) which results in 127 elements at the baseline 88964N
(20,000 1bf) thrust level. This element size was selected on the basis of
Rerojet Liquid Rocket Company (ALRC) Space Snuttle Auxiliary Propulsion
System (APS) and M-1 Engine design experience.
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Figure 29. Dual-Expander Engine Nozzle Area Ratios
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IV, C, TCA Geometry Definitions (cont.)

Figure 30 shows ERE versus chamber length and notes the initial
analysis design conditions. Three fuel injection pressure drop values were
evaluated because shear coaxial element performance is sensitive to the
relative fuel to oxidizer injection velocity. Figure 30 indicates a maxi-
mum chamber length requirement of 17.8 to 22.9 cm (7-9 inches) to guarantee

the 98% ERE goal. A length of 20.3 cm (8 inches) was selected for the
nominal design point.

After the selection of a design chamber length of 20.3 cm (8
inches), the influences of chamber contraction ratio and chamber pressure
on ERE were determined. Figure 31 presents these results. The top plot
indicates that ERE increases as chamber contraction ratio (ec) decreases.
The bottom plot shows that, for a constant thrust per element, ERE
increases as chamber pressure increases. The selection of the design
chamber contraction ratio was tempered with the knowledge that the Rayleigh
1ine combustion pressure loss increases with decreasing contraction ratio,
as shown on Figure 32. A design contraction ratio value of 2.0:1 was selected
to minimize the combustion pressure loss and chamber weight and to attain
near maximum performance.

TCA throat area requirements were evaluaied for thrust splits from
0.2 to 0.8 and for a chamber pressure range from 34 to 136 atm (500 to
2000 psia). Thrust split does not significantly influence the required chamber
throat area. Using a radius equal to one throat radius, RT, to blend in
the chamber cylindrical and convergent sections and the convergent section to
the throat, the following formula was developed to account for chamber
length variations with chamber pressure:

L' = 3.18 RT + 15,24; for chamber (6)
lenath in cm,

L' = 1.253 Ry + 6.0; for chamber (6a)
length 1n inches.

The equations result in a chamber length requirement of about
20.8 cm (8.2 in.) at a nominal chamber pressure of 68 atm (1000 psia).
Scaling to any chamber pressure results in:

L' = 5.51 /68/Pc + 15.24; for chamber (7)
length in cm and P¢ in atm
L' = 2.17 /{1000)/P. + 6.0; for chamber (7a)

length in inches and P¢ in psia

2. Plug Cluster Engine

The baseline plug cluster engine is composed of five 02/H2 and
five 02/RP-1 modules alternately mounted on a nlug. The thrust per module
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IV, C, TCA Geometry Definitions (cont.)

is 8896N (2000 1bf) and thrust split is 0.5. The 02/Hz baseline module is
the ALRC Integrated Thruster Assembly (ITA) engine, as defined by the Uncon-

ventional Nozzle Trade-Off Study (Ref. 3). The ITA, modified to an all regen-

eratively cooled configuration with a 40:1 nozzle expansion ratio, will

deliver 8896N (2000 1bf) thrust at a chamber pressure of 23.1 atm (340 psia).

The following formula scales the 0%/H2 thrust chamber radius for the study
chamber pressure range of 20.4 to 68 atm (300 to 1000 psia):

R = v23.1/P¢ x 2.44; for throat (8)
radius in cm and Pc in atn.
Ry = V{340)/P; x 0.96; for throat (8a)

radius in inches and P¢ in psia.

The nominal ITA chamber length is 16.26 cm (6.4 inches) and
the design contraction ratio is 3.3:1. The foliowing formula was derived
to calculate chamber length for the study operating chamber pressure range:

L' = 6.35 /23.T/P; + 9.91; for chamber (9)
length in cm and P¢ in atm
L' = 2.50 /{340)/Pc + 3.9; for chamber (9a)

length in inches and PC in psia

A vaporization limited performance calculation was conducted to
estimate the chamber length requirement for the 0p/RP-1 module. The cal-
culation indicated a 35.6 to 38.1 cm (14-15 inch) L' would result in attain-
ment of the p ~gram 98% ERE goal at an operating chamber pressure of 20.4
atm (300 psia). This calculation agrees with the baseline 35.6 cm
(14 inch) chamber length selected for the High Density Fuei Combustion and
Cooling Investigation, Contract NAS 3-21030. A contraction ratio of 3.3:1
was also baselined for the 0,/RP-1 module. The following formula scales
the chamber length for the study:

L' = 6.68 /20.4/Pc + 30.48; for chamber (10)
Tength in cm and Pc in atm.
L' = 2.63 /{300)/P: + 12.0; for chamber (10a)

length in inches and P. in psia

3. Dual-Expander Engine

The central chamber for this concept uses liquid/liquid propel-
lant injection. This injection scheme is similar to that employed on the
02/RP-1 module of the plug cluster. Therefore, the chamber length for the
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IV, C, TCA Geometry Definitions (cont.)

02/RP-1 engine of the dual-expander concept is specified with the formula
previously developed for the plug cluster engine (equations 10 and 10a).
The 05/RP-1 chamber contraction ratio was selected to be 3.3:1 which is
also identical to the plug cluster module value.

The gas/gas 02/H> injection for this concept is similar to that
employed on the 03/H2 module of the plug cluster engine. Therefore, the
plug cluster chamber length formula was utilized for the dual-expander
annular combustor (equations 9 and 9a).

A contraction ratio of 3.3:1 was also selected for this combus-
tion chamber.

Further design guidelines were established for the chamber and
nozzle contours. These guidelines were the result of ALRC in-house studies
and are as follows:

a. 02/RP-1 nozzle contour truncated at an area ratio of 8.8:1

x/Rt 0.000 G.324 0.791 1.401 2.685
r/Rt 1.000 1.119 1.513 2.015 2.962

b. Annular inner wall expansion half angle 31 degrees;
outer wall expansion half angle 38.5 degrees.

c. Minimum wall thickness separating combustors of 1.02 cm
(0.4 inches).

d. Outer wall contour (0p/H2) is parabolic. The attach angle
at 02/RP-1 nozzle truncation plane is 38.5 degrees. The
nozzle exit half angle is 11 degrees.

Typical dual-expander combustion chamber and nozzle geometries
are shown in Figures 33 and 34, respectively.

D.  STRUCTURAL ANALYSIS

Structural analyses were undertaken to determine the design constraints
imposed by low cycle thermal fatigue and creep-rupture strength. These
analyses were conducted in conjunction with the coolant heat transfer evalua-
tion to establish the chamber temperature, pressure and coolant channel
geometry limits created by the chamber service life requirements. For this
analysis the service life between overhauls is 300 cycles times a safety
factor of 4 (1200 total cycles) or 10 hours accumulated run time.
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IV, D, Structural Analysis (cont.)

The parametric structural analyses of all three MMOTV engine concepts
were conducted over the study chamber pressure and thrust split ranges at a
baseline thrust level of 88964N (20,000 1b).

The material used for the combustion chamber (ron-tubular portion) is
Zzirconium copper with material properties assumed to conform to those shown
on Figures 18 through 21. The low cycle fatigue data for zirconium copper
~as assumed iu have compressive hold time effects inciuded, so no creep
damage fraction was used in the low-cycle fatigue analyses. The outer
shell of the tripropellant and plug cluster engine chambers is electro-
formed nickel with adequate thickness to remain elastic under the outward
pressure and copper expansion forces. Total strain ranges in the copper
liner could be reduced and fatigue life increased by further optimization
of the shell thickness but this was beyond the scope of these parametric
studies. The central chamber of the dual-expander engine has mill-slotted
copper channels on both sides of an inner nickei structure shell. The
outer annular chamber for the dual-expander engine is also of zirconium
copper construction with an electroformed nickel shell whose thickness was
not optimized.

The low cycle fatigue life is dependent upon the total strain range
induced on the hot gas-side wall of the regen-cooled thrust chamber. The
large number of chamber confiqurations and thermal loadings in the parametric
studies precluded the use of finite element computer analysis at each
design point. A simplified strain prediction method was developed, based
upon a strain concentration factor (K.), thermal expansion coefficient (<),
and the temperature differential between gas and backside temperatures (aT).

€ =KEﬂAT (1)

The value of K. for a biaxiallyconstrained "hot spot" in the plastic
range is 2.0 (Reference 13). Finite element model computer solutions for
selected MMOTV configurations and previous studies (Ref. 2) are plotted on
Figure 35 and verify this factor. Lower gas-side wall temperatures exhibit
Tower Ko values due to reduced plasticity and relief from outward deflec-
tion of the outer chamber shell. Higher gas-side temperatures exhibit higher
Ke values due to less outward deflection of the shell when the copper
softens, and from uneven strain distributions when the copper liner moves
further into the plastic range and pressure-induced strains become
significant.

The design curve of Figure 35 was used to determine K. and Equation (1)
was used to predict total strain ranges for the MMOTV regen-chambers. This
strain range was then compared to copper low cycle fatigue allowables of
Figure 20 to ensure a 1200-cycle life (maximum strain range of 2.15%).
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Iv, D, Strir~tural Analysis (cont.)

Thermal stresses are self-equilibrating and do not significantly affect
strength margins of safety. Mechanical (pressure) loads must be carried
by the channels for the full engine duration, however. The mechanical
stresses were predicted by a three-hinge point method and compared to
yield strength below the creep regime. A fully plastic limit analysis
was used in the creep regime, and the stresses compared to the lower 10-
hour creep rupture strength. The most critical channel location for mechan-
1cal stresses is near the coolant inlet where nearly tull coolcnt pressure
acts on high aspect ratio channels at maximum temperatures. Since low
aspect ratios at that location would require a large number of coolant
channels and the 10-hour strength at 867°K (1100°F) is estimated to be very
low, the gas-side temperatiures were limited to 811°K (1000°F).

The results of the analyses show that the low-cycle fatigue life require-
ment 1imits the maximum temperature differential between the gas-side sur-
face and the surrounding cooler structure. This (AT) value for the
regeneratively-cooled thrust chambers is shown in Figure 36. Maximum AT
is limited by fatigue life for outer jacket surface temperatures below 394°K
1250°F) and by engine duraticn for outside temperatures above 394°K (250°F).

The gas-side temperature is limited to 811°K (1000°F) as a result of
low 10-hour creep-rupture 1ife for copper. Higher temperatures would
require the use of many very narrow coolant channels, which is felt to be
impractical. Enhanced creep damage effects on the low-cycle fatigue life are
also likely.

Coolant channel geometry is limited by copper yield strength at low
temperatures and creep-rupture life at elevated temperatures. The channel
width/thickness (aspect ratio) is limited by yield strength at gas-side
wall temperatures up to 700°K (800°F) and by creep-rupture 10-hour life at
higher temperatures in the creep regime as shown on Figure 37.

E.  THERMAL ANALYSES

Cooling analyses were conducted at a Mode 1 thrust level of 88964N
{20,000 1b). Parametric studies over a chamber pressure range from 6.8
to 136 atm (100 psia to 2000 psia) and over a thrust split range from
0.40 to 0.80 were covered in different portions of the study. The
chamber pressure ranges, and thrust split ranges considered for Mode 1
and Mode 2 operation of each of the engine systems is summarized below:
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Figure 36. Allowable Temperature Differentials for MMOTV Regen Chambers
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IV, E, Thermal Analyses (cont.)

Mode 1 Thrust
Engine Type Mode 1 Pc Ranqge Mode 2 Pc Range Split Range

Tripropellant 34-136 atm 6.8-81.6 atm 4-.8
(500-2000 psia) (100-1200 psia)
Plug Cluster 20.4-68 atm 20.4-68 atm .5

(300-1000 psia) (300-1000 psia)

Dual Expander 34 to 136 atm 17-68 atm .4-.8
(500-2000 psia) (250-1000 psia)

The relative feasibility of the different engine systems was assessed
based on the attainable chamber pressure, as determined by the respective
pressure drop requirements.

Rectangular channel construction was used for all the engine chamber
designs. A gas side wall thickness of .635 mm (0.025 in.), the minimum
allowed by the study criteria (Table XI!), was used wherever possible.
Larger wall thicknesses were dictated in some of the designs because of
structural requirements. The maximum gas-side wall temperatures were
limited to 811°K (1000°F) because of the 10 hour life requirement. The
gas-side wall thickness and wall temperature limitations used in this study
were presented in section IV,D.

A1 designs are based on straddle-mill machining with a constant land
width of 1.02 mm (0.040 in.). Based on channel optimization studies for
hydrogen cooling, the 4:1 channel depth/width limit of Table XII was
used in the throat region. Applying this 4:1 depth/width Timit at the
throat resulted in the selection of the number of coolant channels for most
of the designs. The channel width was not allowed to go below 1.02 mm
(0.040 inches), however, and in some designs this limit was used to set the
number of channels.

1. Methods of Analysis

A two dimensional nozzle expansion performance analysis for a
chamber pressure of 68 atm (1000 psia), 50/50 thrust split, cexit = 400:1
and the previously referenced TRAN 72 computer runs were used to determine
gas-side wall boundary layer properties needed in the analyses of the tri-
propellant engines. Two dimensional nozzle expansion performance and TRAN
72 programs were also used for analyses of the LOX/LH2 and LOX/RP-1 modules
of the plug cluster engine systems. One di-ensional wall boundary layer
properties were used for the plug sidewall analyses, and Cornell data
(Reference 14) were used for the plug base heat load approximation. One
dimensional properties were also employed in the dual-expander engine
systems analyses.
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IV, E, Thermal Analyses (cont.)

Heat transfer from the combustion products to the chamber wall
was calculated by the following non-reactive formulation:

. -0.2 5. 0.6 X
p = 0.026 Cg pg Ug Reg Pre Cpf (Taw - Twg)

in which subscript 7 refers to the film temperature Tf, defined as Tf =
0.5 (Taw + Twg) with of = pg To/T¢ and Ref = of ug D/uf. The coefficient
Cq accounts for flow acceleration effects and is shown in Figure 38 as a
function of area ratio.

The symbols used in this section are defined on Table XIV,

The design data were generated with a regenerative-cooling pro-
gram similar to the HOCOOL program (Ref. 15) constructed for NASA/Lewis
under Contract NAS 3-17813. The option designated WALL = 5 was used with
some added modifications to simulate two-dimensional conduction effects
and the spatial variation of the coolant heat transfer coefficient. This
option, shown schematically on Figure 39 represents the hot wall, the land
and that part of the external wall adjacent to the channel as fins. That

part of the external wall adjacent to the land is assumed to be isothermal.

The modified wall = 5 model establishes three correlation coefiicients
which are applied to the hot wall, the land, and the back wall separately.
The film coefficient for the hot wall is the product of an input factor
(HFAC) and the correlation coefficient evaluated at a temperature which

is the average of the wall temperature at the center of the channel

(TWL 2) and the wall temperature at the corner of the channel (TCORN).

Tne film coefficient for the back wall is evaluated at the back side

wall temperature at the center of the channel (TBS). The film coefficient
which is applied to the land surface is the product of an input factor
(GFAC) times the back wall coefficient plus 1-GFAC times the hot wall
coefficient. The selection of the HFAC and GFAC parameters provides a
means of simulating the actual coolant coefficient variation.

A limited number of two dimensional node network analyses using
SINDA (Ref. 16) were performed at the maximum heat flux location near the
throat. These studies accomniished the following:

a. Provided tie basis for determining the Wall = 5 simulation
parameters for hydrogen cooling.

b. Established the optimum channel geometry for a fixed
coolant flow area with hydrogen cooling.

A channel optimization study was conducted to define the channel
geometry which minimizes the local gas-side wall temperature for a fixed
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TABLE XIV. - THERMAL ANA!' VSIS NOMENCLATURE

English Letters

k
Nu
Pr
Re
T

u

Greek Letters

Local chamber diameter

Gas-cide heat transfer correlation coefficient

Specific heat; C_ is an integrated average between
the coolant bulkPtemperature and the wall temperature

Factor applied to the coolant heat transfer coefficient
evaluated at the centerline wall temperature to obtain :
the average coefficient for the gas-side wall §
Thermal conductivity
Nusselt number
Prandt] -wunber
Reynolds, number

Temperature

Axial velocity

u

P
f

Subscripts

aw

b

Viscosity
density

Gas-side heat flux

Adiabatic wall
Coolant bulk or mixed mean temperature X
Freestream
£

ilm temperature, 0.5 (Taw + ng)
Coolant-cside wall surface

Gas-side wall surface
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IV, E, Thermal Analyses (cont.)

pressure gradient. This study assumed a local throat static pressure of
102 atm (1500 psia), and a bulk temperature of 111°K (200°R). The heat
transfer coefficient for hydrogen is greater at lower wall temperatures,
due primarily to the film sroperty effects in the Hess and Kunz correlation
(Reference 17). The land is therefore a very effective fin and the maximum
wall temperatures occcur at the center of the channel. Figure 40 presents
the results of the “tannel optimizition study. Channel depth is plotted
against channel width with lines of varying iand width superimposed.

Two dimensional SINDA network analyses with a hot wall thickness of .635
mm (0.025 in.) were used, ana the resulting maximum wall temperatures are
displayed on the figure. The figure also indicates that channel width
affects the maximum wall temperature much more than channel depih does.
Minirizing the land width 7or a given channel width reduces the maximum
wall itemperatures primarily occause of the channel depth reduction allowed
for a fixed pressure gradient. Therefore, the ¢otimum channel configuration
has the channel width and land width minimized. The channel depth is the
design variable used to adjust local coolant velocities. Use of a

1.02 mm (0.040 in.) land in the present designs instead of the .762 mm
(0.030 in.) minimum allowed by the study criteria results in approximately
a 11°K (20°R) higher maximum wall temperature.

Simulation parameters HFAC and GFAC used in the Wall = 5 model were
also based on two dimensional SINDA network analyses. The coolant bulk temper-
ature used to generate the parameters was slightly higher, but the same
general techniques were used. The maximum temperatures produced by the com-
puter program used for this analysis matched the SINDA results when the
HFAC parameter was set at 1.0, ana the GFAC parameter was 0.5.

Curvature enhancement of the coolant film coefficient was
included in the tripropellant and plug cluster engine systems analyses.
The dual-expander system analyses did not include the enhancement effects.
The enhancement cof the Tocal neat transfer coefficient due to chamber
curvature was applied in the same manner as described in Reference 18 for
friction coefficients.

The enhancement for the purtliun of the throat region where the
bu:k momentum is being forced against the coolant side wall nearest the
hot gas side is expressed as [Rep (r/R)2]0.05 where Rep is the Reynolds
number based upon the bulk properties, r is the inside radius of the local
passage, and R is the local radius of curvature of the passage. Conversely,
the portion of the throat region where the bulk momentum is forcing the
coolant away from the hot gas side is expressed as the following multiplier
[Rep (r/R)2]-0.05. For the purposes of this anmalysis, only the heat trans-
fer coefficient of the gas side liquid wall was corrected. The other walls
of the passage were exempted Trom curvature effects and treated separately.
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IV, F, Thermal Analyses (cont.)

2. Chamber Wall Construction

Zirconium-copper was specified as the gas-side wall material for
all the chambers of the engine systems analyzed. The analyses assumed a
Nickel closeout of .254 cm (0.10) inches in all the designs. A single
designscheme was selected for all the chambers based on the imposed channel
design constraints, the hydrogen cooling optimization study and fabrica-
biiity. Straudle-mill machining, which yields a constant land width was
selected as the primary fabrication method. To simplify the analyses no
bifurcation of the coolant channels was assumed in the nozzle regions of
the chamter.

A constant land width of .102 ¢m (.040 in.) was selected based
upon the hydrogen cooling opiimization study conducted, and OMS engine
design practice. While the optimization study indicated a slight advan-
tage in using the minimum allowable land width of .0762 cm (C.030 in.),
the OMS channel designs limit the minimum land thickness to approximate
.102 cm (0.040 inches) to insure adequate bond area on the land for the
Nickel closeout process.

The minimum allowable gas-side wall thickness of .0635 cm
(0.025 in.) was used in the designs whenever possible. However, the large
channel widths encountered in the nozzle regions of some of the chamber
designs dictated wall thicknesses as large as .305 cm (0.120 in.) based
on the structural requirements shown on Figure 37. These thicker gas-
side wall dimensions do not cause excessive pressure drop requirements
because they only occur in the low heat flux regions of the chambers.

Other channel geometry parameters which were determined for each
design were the number of channels and the channel depth axial profile.
With the land width fixed and the channel depth limited to four times the
channel width, the maximum Tocal coolant flow area was set by the number
of channels. Thannel optimization studies with hydrogen cooling indicated
that it was desirable to design at the channel depth/width 1imit of four.
However, this could be accompiished at only one axial position in most
cases. At other locations, it was necessary to satisfy the thermal
design criteria with lower depth/width ratios or to overcool, i.e., not
reach the applicable wall temperature limits. In order to avoid over-
cooling in high flux regions, the number of channels in each design was
set by satisfying the design criteria at the throat with a channel depth/
width ratio as close to four to one as possible.

The minimum channel width was limited to .102 cm (0.040 in.)
in the study for practical fabrication reasons. This resulted in a few
chamber designs whereby the depth to width ratio at the throat fell below
four to one.
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IV, E, Thermal Analyses (cont.)

3. Tripropellant Engine Cooling Evaluation

Tripropellant engine designs combined three different methods of
thrust chamber assembly fabrication. Mill-slotted zirconium copper channel
construction was employed to cool the chambcv from an exit area ratio
of 8:1 to the injector. A tube bundle constructed of A-286 was then used
from the 8:1 area ratio to the applicable radiation cooled nozzle transi-
tion area ratio.

The tripropellant engine cooling schematic is shown on Figure 41.
This scheme was used to evaluate the coolant pressure drop requirements
over the entire range of chamber pressures 34 to 136 atm (500 to 2000
psia), and thrust splits, 0.4 to 0.8. The coolant enters at an area
ratio of 8:1 and flows counter to the gases through the mill-slotted zircon-
ium copper chamber. The total hydrogen flow exits at the injector, is
brought back externally to the tube bundle inlet manifold, and is then
used to cool the two pass A-286 tube bundle nozzle from 8:1 to the radia-
tion cooled nozzle transition point. The tube bundle nozzle was used to
conserve weight. An inlet area ratio of 8:1 was established at a thrust
chamber pressure of 136 atm (2000 psia) and a thrust split of 0.5. The
tube bundle transition area ratio could be varied with thrust split and
chamber pressure. However, iie tube bundle pressure drop was very small
(about 1% of the total) and hence, the affect of the entry area ratio
upon pressure drop is small. Therefore, to simplify the geometric
scaling, the conlant inlet was fixed at an area ratio of 8:1 throughout
the study.

Radiation cooled nozzle transition area ratios are presented in
Figure 42. The attach point area ratios vary as functions of chamber pres-
sure and thrust split. FS-85 columbium with an R512-E silicide coating
was selected as the nozzle material. Based on OMS engine design experience,
a gas-side wall temperature maximum of 1617°K (2450°F) was used for the
analyses.

A single tube bundle design was investigated and then analytical
scaling techniques were used to estimate the pressure drops for the other
chamber pressures and thrust splits. Tube bundle pressure drops are
generally small when compared to the chamber pressure drops. Only the
high thrust split cases at high chamber pressure result in tube bundle
pressure drips greater than .54 atm (8 psia). Table XV presents the
tube bundle pressure drops for the tripropellant engines.

Table XVI and Figures 43 and 44 present the results of the

zirconium-copper chamber analyses. Table XVI presents pertinent design
parameters as a function of the Mode 1 chamber pressure and thrust split
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[
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Pressure Drop,

TABLE XV. - TRIPROPELLANT ENGINE TUBE BUNDLE PRESSURE DROPS

atm (psi)

0.21
0.20
0.41

0.35
0.33

(3.1)
(3.0)
(6.0)

(5.1)
(4.8)

1.36 (20.0)

0.48 (7.1)
0.46 (6.7)
13.6 (200)

o oocsmrime o st st b e

83

T I 1Y -

b e e i 4 oS



. L e 4 .
[PV V- VP RO & AN NNUDERE U DS SERAUESE YRS

S6100°0 001 2€0°0 g0l X L°0l veglL r2 A | 976 9t°0 05/0S 9t
xXeu N
¥ol98 = Ny 0St = 3 “341)S pdl00) uoLjelpRy 03 |:8 = 3
ubLsag ajpung aqn] 982-Y
69100°0 86 182y 0L X 0°69 69€€ 6¥°0 £°92% L9° %S 02/08
86100°0 86 8€L"0 gOL X 6718 0v6€ 221 2°861 68 91 06/0S
£0200°0 56 8vL 0 g0l X 0798 8Ly Lyl 0" bLL 25761 09/0% 9cl
8910070 9¢| 9LL"0 g0l X L°GE 942 6v°0 2°GS¢€ GL°t 02/08
961000 vel 90°0 g0L X 8°1¥ £L2¢ 7| €°291 L0°2 06/08
90200°0 2zl 280°0 gl X L°¥¥ 6vvE Ly L2t £v°2 09/0% 89
£9100°0 0591 890°0 g0l X G 81 9vee 5470 57862 €9°0 02/08
¥6100°0 2el £50°0 Q0L X t° 12 2LLe A | L°8¢ElL 8v°0 05/0§
£06200°0 2el 190°0 g0l X 9722 6262 Lyt 8121 €5°0 09/0% 14
dgq S|auuey)  “oN yoey 2w/m i 235 /by No uje 3Lds uge
xey 30 43quny Xew ‘xXnl4 Jedy ‘peoq jeay u:cpoouz xpzmhq Lmnsm:umq IsnUy]  3anssady
* Xeyy Le3jol . J4aquey)
XClHgy 131u]
Nv9688 = 4 Aol LB = L 006 = 1 L:8 = 3 3® 33Ul 3Jue|00)
SLIND “I°S

P e s o - e e

A a . A

AYVHWNS HNIT002 3INION3 INVII1IH0YdIYL - “IAX 319vL

P " DR

84



- Wy

.-

s e

$6100°0 00l 2€0°0 23 6941 0Lz £ EpL L9 05/05 0002
xXew
4000l = M 09L = 3 “34LYS Pa|00) uoLjeipey 03 |ig = 3
uBTSaq oLpung 9qnL 98z-V
6910070 86 (8270 22 S61E 80° 1 v* 191 9°£08 02/08
86100°9 86 8E1°0 6°6v (9L 0L°2 £°96¢ L7 Lv2 05/05
£0200°0 86 8v1°0 9°25 LL6E v2°¢ Zele 6982 09/0v 0002
89100°0 9€ L 91L°0 § 12 ££92 80"t €669 019 02/08
96100°0 2L 9£0°0 9°62 oLE 0L°2 1°262 b-0€ 05/05
90200°0 2zt 280°0 0"l L£2€ v2'€ 8°962 L°GE 09/0t 0001
£9100°0 051 890°0 0" 11 5222 80" € LES €6 02/08
610070 61 150°0 L°€t 6252 0Lz 9°8y2 0L 06/05
£0200°0 el 190°0 8¢l viL2 ve's 2612 8°¢ 09/0t 00§
gq s|auueyy  “oN yoey Auwm-m.cw\sgmv. (93s/mg) (29s/uq|) (40) ~ {etsd) 3tds  (elsd)
40 Jaquny xey peoT 3B3aH  JuUR|00) ALng Jaquiey) ISNUY]l  aANSSaUg
xey xn _mmmww: Le30L M 1v dv Jaquely
X®lgy 13Lu
al 000°02 = 4 40,0001 = 1 406 = 1o tUI; L:8 = 3 3@ 13u] jue|00)

SLINN HSITSN3

(*3u02) I1AX 319VL

P N o e e e

85



oy

mm w s e e 70 00

100F_-
- (1000) . COOLANT INLET
L t e = 8:1
_ [ H, COOLANT
< L
50l %
s F g
S X g (o)
w = e =
x u p—
= (-4
%] -l ] o
2 a -
& - e CHAMBER SERVICE
- & i FREE LIFE = 300 THERMAL
e - o CYCLES X SAFETY
> £ FACTOR OF 4 =
=z =z 1200 CYCLES
2 1L 2
- - =
3 L 3
& - » (10)
=
- - THRUST SPLIT
- i 040/60
: A50/50
}—
080/20
ol F = 88964N (20,000 LB)
(1) L A |
(500) (1000) (1500) (2000)
CHAMBER PRESSURE, (PSIA)
L i 4 }
34 68 102 136
CHAMBER PRESSURE, atm
Figure 43. OTV Tripropellant Chamber Pressure Drop

86




e g bt i St R o

100

n
- (1000) ~
o -
i L H, COOLANT
= L.
= "
5 -y
® 16 b -~
a - o
g Eoop
& - & "
32 } 2 -
(7] [7,] -
o 5 &
o a NOTE: CHAMBER SERVICE
i w FREE LIFE = 300
3 r =] THERMAL CYCLES X
E 3 SAFETY FACTOR OF
" o 4 = 1200 CYCLES
[oo] [~}
= ] = -
~ - ~
o - fans]
E [ Z (0
g’ L § C THRUST SPLIT
£ - - -
g | = - D 40/60
- A 50/50
- - 0 /20
g b
0.1 L. F = 88964N (20,000 LB)
[500) (1000) (1500) (2000)
CHAMBER PRESSURL, (PSIA)
L i | ]
34 68 102 136

CHAMBER PRESSURE, acm

Figure 44. OQTV Tripropellant Chamber Pressure Drop In.luding Tube Bundle

87



¥

IV, E, Thermal Analyses (cont.)

for the nine chambers analyzed. The chamber pressure range covered in this
study was from 34 to 136 atm (500 to 2000 psia) in Mode 1 operation. The
Mode 2 chamber pressure range ran from approximately 6.8 to 81.6 atm 100 to
1200 psia). Mode 1 operation was used to design the chambers. Mode 2

02/H2 operation is less severe thermally becau.- the coolant flow rate remains
a constant and the chamber pressure is reduced. Figures 43 and 44 present
the pressure drop vs chamber pressure results for the zirconium-copper
chambers only and chambers plus A-286 tube bundles, respectively. The effect
of thrust split upon pressure drop is also displayed on these figures. The
highest pressure drops occur at the highest thrust split (80/20). This
occurs primarily because of the lower coolant flow rate which results in
higher hydrogen bulk temperatures and thus, lower heat transfer coeffi-
cients for a given pressure gradient. However, the pressure drops for the
40/60 thrust split cases are greater than for the 5C/50 thrust split cases.
This is caused primarily by the slightly more severe gas environment at the
lower thrust split. Even though tre coolant flow rate is greater, the
maximum heat fluxes and total heat loads are also greater than at the 50/50
thrust split woints. The pressure drop versus thrust split optimization
point zppears to be limited on the high thrust split side by the bulk
temperature rise influence, and on the low thrust split side by the

higher heat fluxes and heat loads encountered.

Cooling of the tripropellant engine over the entire thrust split
and chamber pressure range is practical.

4. Plug Cluster Engine Coolina Evaluation

The plug cluster engine cooling schematic analyzed is displayed
on Figure 45. The hydrogen is first used to coo! the plug, flowing from
the low area ratio regions to the high area ratio regions, and then across
the base of the plug. The hydrogen is then brought back up to the LOX/LHp
module éxits (e = 40) and flows up the nozzle through *he throat region
and chamber to exit at the injector. Sev..al different coolant flow paths
were tested for the oxygen cooling cases of tha {0X/RP-] module. RP-Ii
cooling of the LOX/RP-1 module was also investigated.

During the course of this study, the results from the Unconven-
tional Nozzle Tradeoff Study (Ref. 3) showed that i: is desirable to
have the module exitis touzh to maximize performance. This results in
very high area ratio mod.les. To minimize the weight c¢f the module nozzle
extensions, radiation cooled nozzles are used. The following attackment
area ratios were established:
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IV, E, Thermal Analyses (cont.)

Thrust Radiation Cooled Nozgle
Chamber Pressure, Attachment Arf;X?i;IOMOd T

atm (psia) LOX/RP-1 Module 2 'oadule

20.4 (300) 26 33

34 (500) 36 50

For these cases, the cooling sch.natic is essentially the same
as described except that the hydrogen enters the module cooling jacket

at the above area ratios after cooling the plug base instead of at the
module exit.

Results from the plug cluster engine design thermal analyses
are presented in Table XVII and Figure 46. Table XVII presents pertinent
design parameters as a function of chamber pressure. Thrust split was
fixed at 50,50. The four cases investigated included the Hy cooled
LOX/LH2 moduie, RP-1 cooled LOX/RP-1 module,02 cooled LOX/RP-1 module
and H2 cooled plug. Conclusive results were obtained only for the H2
cooled cases for reasons to be explained later in this section. Figure 46
displays the effect of chamber pressure upon pressure drop for the H2
cooled LOX/LH2 mdolue.

The LOX/LH2 module coolant channel designs all result in prac-
tical pressure drops. Tnese results were obtained by assuming that the
piug surfaces would be cooled initially followed by the module. This
assumption resulted in different coolant inlet temperatures for the module
as a function of chamber pressure.

Detailed coolant channel designs for the plug were not pursued
in this study. Preliminary results indicated that the pressure drops
associated with the plug were extremely low. Computer modeling of the
plug was therefore done only to estimate the heat load associated with

the plug to obtain the bulk temperature rise to be used in the module
analyses.

RP-1 cooling the LOX/RP-1 module proved to be impractical because
of bulk temperature rise limitations. The RP-1 coolant inlet temperature
specified is 311°K (100°F) and a liquid-side wall temperature limit of
589°K (600°F) is required to minimize cracking and coking of the RP-1.
These limits result in a practical bulk temperature rise limit of 250-
278°K (450-500°F). The 02/RP-1 module employs a gas-generator cycle.

In order to meet the 98% combustion efficiency goal this results in
chamber L' values on the order of 33 to 33 cm (13 to 15 inches). These
long chamber lengths result in total heat loads which are 17 to 30%
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1V, E, Thermal Analyses (cont.)

greater than those for the LOX/LHy modules at the same chamber pressure

even though the gas environment is less severe. Bulk temperature rise

values of 498 and 539°K (896 and 971°F) were obtained for the 20.4 and 34 atm
(300 and 500 psia) Pc cases, respectively. RP-1 coolant heat transfer coeffi-
cients were determined from the Hines correlation (Ref. 19).

Cxygen caoling of the LOX/RP-1 module also praved to be imprac-
tical. The oxygen cooling cases are affected by a phase change at low
chamber pressures and by shifts in transport properties near the critical '
temperature and pressure points at the higher chamber pressures. Oxygen
critical temperature and pressure values are 1548°K (278.6°R) and 49.7 atm
(730.4 psia), respectively. With the 1.8 inlet pressure to
chamber pressure ratio specified for gas generator cycles in the study
guidelines, the resulting inlet pressures for chamber pressures of 20.4 and
68 atm (300 and 1000 psia) are 36.7 and 122.4 atm (540 and 1800 psia),
respectively. The specified oxygen inlet temperature is 111°K (200°R).

For the low chamber pressure point, 02 is a compressed liquid at the coolant
channel inlet. As the 02 passes down the coolant channels, the bulk
temperature rises until the saturation temperature is reached and a phase
change from a compressed liquid to a vapor begins. The corresponding shifts
in the oxygen transport properties greatly reduce its cooling effectiveness
until at a point near the critical temperature, the pressure drop require-
ments become excessive. Similarly, at the high chamber pressure point the
02 is supercritical at the coolant channel inlet, being above the critical
pressure value but below the critical temperature value. As the coolant
passes down the coolant channels the bulk temperature rises past the
critical temperature value. This has no adverse effect because only

gradual shifts in transport properties occur at pressures significantly
above critical. As the bulk temperature continues rising and the coolant
static pressure drops, the oxygen cooling effectiveness decreases until

the pressure drop requirements become excessive.

Therefore, it appears that oxygen cooling at the low chamber
pressures is limited because of the shift in transport properties caused
by the phase change from liquid to vapor. At the high chamber pressure,
it is limited by the transport properties changes associated with the
bulk temperature rise and also with the coolant static pressure degradation.
Oxygen appears to be an impractical coolant over the entire chamber pres-
sure range covered at this 88964N (20,000 1b) thrust level. The relatively
low thrustto chamber pressure ratio covered in this study, resulted in low
coolant flow rate per unit heat flux levels which Timited the feasibility
of oxygen cooling. Oxygen cooling was dropped from further study efforts.

Oxygen cooling heat transfer coefficients were calculated based

on the supercritical oxygen heat transfer correlation of Reference 20,
Sub-critical heat transfer coefficients were evaluated using the same
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IV, E, Thermal Analyses (cont.)

correlation. No applicable sub-critical cooling correlations for oxygen
were known to exist.

To continue the mixed mode plug cluster evaluations in the re-
maining study tasks, RP-1 cooling and a module chamber pressure of 20.4
atm (300 psia) was selected. This assumes that impurities can be removed
from the RP-1 to raise the bulk temperature limit above 589°K (600°F).
The RP-1 module cooling analyses then proceeded assuming that the coolant
temperature was not limiting. This was done in order to obtain coolant
AP data at the baseline thrust level and over a range of thrusts for use
in the power balance analyses and engine parametric studies. The results
of this analyses are shown on Figures 47 and 48. Even with this assump-
tion a 8896N/module (2000 1b) thrust module design cooled with RP-1 is
very marginal to meet the life requirements as noted by Figuie 48.

Other potential solutions to the HDF module cooling problem
which might be considered in future efforts if the concept proves to be
attractive for other reasons are:

° Reduction in chamber life goals.

o

Reduction in performance goals to reduce chamber length.

° Consideration of dump or film cooling.

[-]

Hydrogen cooled 02/RP-1 module.

Some of these approaches might be considered in combination
rather than alone.

5. Dual-Expander Engine Cooling Evaluation

The dual-expander engine couoling schematic is presented on
Figure 49. The hydrogen flow is split into two parallel flow paths in
this scheme. To optimize the cooling capability of hydrogen, it is
necessary to keep the coolant bulk temperature low when it passes through
the high heat flux regions. The dual-expander concept results in three
separate surfaces which must be cooled. Each of these surfaces has a high
heat flux (throat) region instead of the single region encountered in a
conventional chamber design. The selection of parallel flow paths per-
mits the coolant flowrate to be split in order to minimize pressure drop.
In this scheme, the smaller percentage of the total coolant flow is used
to cool the outer annular chamber wall. This coolant introduced at the

injector plane, flows through the throat, and 2xits at a manifold located in the -

forced deflection nozzle extension. The coolant flowrate split was chosen

95



.
IUP————— |

96

RR-1 COOLANT

68.0 (1000) -
27.2 | (400) |-
=
£ = g
8 13.6 & (200) -
o o
<3 <J
fn 6.80F o (100)
S 3
< <L
o] -~
g; gg MODULE CHAMBER
§ 2.72} § (40) | RESSURE, atm (PSIA)
O o 34 (500)
[S%] [¥9]
=) 3
= (o]
.68- (10)
20.4 (300)
27- (4) { | L 1 A 1 |
) 80 160 240 320 400 3' 480 560
TOTAL ENGINE THRUST, N X 10~
| L L 1 1 ] i |
0 (20) (40) (60) (80) S\OO) (120)
TOTAL ENGINE THRUST, (LB X 10-3)
L 1 1 ] 1 i J
0 (2) (4) (6) (8) (10) (12)
LOX/RP-1 MODULE THRUST, (LB X 10°2)
Figure 47. Plug Cluster LOX/RP-1 Module Coolant Jacket AP



-
[ Tp———— Y

900

[o <}
(=3
o
L)

~J
o
(=]
T

COOLANT BULK TEMPERATURE, °K

COOLANT BULK TEMPERATURE, (°F)

600 L

Figure 48.

1100 ~
1000 }
MAXIMUM FOR CYCLE LIFE
900 b= —
MODULE CHAMBER PRESSURE,
800 - atm  (PSIA)
34 (500)
700 b RP-1 COOLANT 20.4  (300)
600 I j 1 1 1 |

80 160 240 320 400 480
TOTAL ENGINE THRUST, N X 1073

| 1 1 | 1 J

0 (20) (40) (60) (80) (100)
TOTAL ENGINE THRUST, (LB X 1073)

L 1 | 1 1 . |
0 (2)  (4) (6) (8) (10)

LOX/RP-1 MODULE THRUST, (LB X 10‘3)

Plug Cluster LOX/RP-1 Module Coolant Bulk Temperature

97



R

98

H2 From

Pump
Discharge

HZ To Preburners

I

1 1

[

Central
Combustio
& Chamber

\ 7

N

Forced Deflection

Nozzle

—

Figure 49.

Dual-Expander Engine Cooling Schematic



o vt

PO

IV, E, Thermal Analyses (cont.)

to keep the bulk temperature of the coolant at the forced deflection nozzle
exit at approximately 756°K (900°F). The larger percentage of the flow is
brought from the central combustion chamber injector plane to the throat,
through the truncated nozzle, turns and flows up the inside wall of the
annular chamber and exits at the injector. It is the second throat region
which limits the design.

Results from the dual expander engine design analyses are dis-
played in Table XVIII and Figure 50. Table XVIII presents pertinent
design parameters as a function of chamb2r pressure and thrust split.
Figure 50 shows the required pressure drop as a function of thrust split
and chamber pressure.

Four different design points were studied in these analyses.
Thrust splits of 40% and 50% were evaluated at central/annular chamber
pressures of 68/34 atm (1000/500 psia). The 50% thrust split designs
were also investigated at 102/51 and 136/68 atm (1500/750 and 2000/
1000 psia) central/annular chamber pressures. The 80% thrust split
values were also investigated. For the chamber pressure range used in
this studv, regenerative cooling for the 80% thrustsplit designs proved
impracticai because of bulk temperature rise limitations.

The 136/68 atm (2000/1000 psia) design point resulted in imprac-
tical coolant velocities which exceeded sonic velocity. It appears that
there are two sets of constraints which limit the dual-expander engine
design concept. They are bulk temperature limits and coolant Mach number
limits. The gas-side wall temperature must be limited to a maximum value
of 811°K (1000°F) in order to meet the cycle life requirements. This in
turn implies a practical coolant bulk temperature limit of roughly 756~
783°K (900-950°F). When the coolant flow rate to the total heat load ratio
gets too Tow, a bulk temperature problem exists. This is the case for
the 80% thrust split level. Coolant Mach number limitations must be applied
in order to minimize lTocal velocity effects and shock wave phenomena.

An appropriate bulk temperature rise limit 1ine is shown on
Figure 50. Approximate coolant Mach number limitation lines are also
plotted. The coolant Mach No. of 0.5 is the more practical limiting case.
The 1imiting lines roughly outline the acceptable/nonacceptable design
1imits for a 88964N (20,000 1b) thrust engine. At the Tow chamber pressure
point, 34 atm (500 psia), practical designs can be achieved for thrust
splits ranging from 40% to roughly 70%. As chamber pressure is increased
however, the acceptable thrust split range must be reduced. At 68 atm
(1000 psia), thrust splits ranging from 40% to roughly 60% ~ould prove
feasible. The max nmumchamber pressure values for 50% and 40% thrust splits
are roughly 88.4 and 102 atm (1300 and 1500 psia), respectively. Any chamber
pressure design above 102 atm (1500 ps‘a) appears to be unacceptable for the
range of thrust splits studied within the design guidelines assumed at the
baseline thrust level.
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SECTION V

TASK 111 - BASELINE ENGINE CYCLE,
WEIGHT AND ENVELOPE ANALYSIS

A. 0BJECTIVES AND GUIDELINES

The objectives of this task were to determine the engine system pres-
sures, temperatures, and delivered performance for each of the baseline
UTV engine concepts previously described in Tables V, VI and VII. For
each of the baseline concepts described by the schematics shown on
Figures 1 through 6, point design summaries of Mode 1 and 2 operation were
established. These summarizes include the cycle schematic, delivered
specific impulse, engire system weight flows, pressures and temperatures,
pump and turbine speeds, efficiencies and horsepowers, engine system
weight and overall envelope dimensions. Cool:ats and cooling schemes
used in this task are as defined in Task II, Section IV. Each of the
baseline concepts were analyzed to determine the maximum Mode 1 and
Mode 2 chamber pressure attainable within the constraints of the cycle
power limit, thrust chamber thermal fatigue limit, propellant property

Timit or ability of components to operate at both Mode 1 and Mode 2 design
conditions.

Engire cycle power balances were performed at the baseline thrust level
of 88964N (20,000 1b). Engine performance data were evaluated for a combus-
tion efficiency of 98%. Simplified JANNAF performance prediciion techniques
(Ref. 21) were used to determine the other performance losses. The boundary
layer loss charts in the simplified procedures were adjusted to agree with
the latest experimental data obtained at area ratio of 400:1, a thrust level
of 38964N (20,000 1b) and 136 atm (2000 psia) chamber pressure (Ref. 22).
For these test conditions, the experimental data indicates that the old pro-
cedures predicted a boundary layer loss approximately 4 secs too high.

Additional study guidelines are as follows:

° System Pressure Losses (AP/Pupstream)

Injectors:
Liquid - 15% (minimum)
Gas - 8% (minimum)
Valves:
Shutoff - 1%

Liquid Control - 5% (minimum)
Gas Control - 10% (minimum)
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V, A, Objectives and Guidelines (cont.)

° Boost Pump Drive Requirements

Boost pumps are not evaluated in the power balancing.
However, appropriate main pump inlet conditions were cal-
culated and main pumpy horsepower penalties of 3% were
assumed to account for the flow required for hydraulically
driven boost pumps.

Main Pump Suction Specific Speed

s - g7 (RPM)(n’/sec)'/?

(maximum) SI Units
(/8
1/2
p .
s = 20,000 {8 ?i§?§7g (maximum)  English Units

° Maximum Bearing DN Values (Roller and Ball)

LH2 Pump - 2 x 106 (RPM) (mm)
LOX Pump - 1.5 x 10 (RPM) (mm)
RP-1 Pump - 1.8 x 10% (RPM) (mm)

Minimum Bearing Size: 20 mm
Turbine Inlet Temperatures

LH, TPA - 1033°K (1860°R) (Fuel-Rich 02/H2 Drive Gas)

LOX TPA - 922°K (1660°R) (Ox-Rich 02/H2 Ori e Gas)

RP-1 TPA - 1089°K (1960°R) (Fuel-Rich 02/RP—] Drive Gas)
B. ENGINE SYSTEM EVALUATIONS

1.  Tripropellant Engine

Engine power balance analyses were conducted at the baseline
Mode 1 thrust level of 88964N (20,000 1b) and a thrust split of 0.5. The
effect of thrust split was also established. The tripropellant engine
system considered in these evaluations is shown schematically on Figures
51 and 52. Power balances were conducted as a function of thrust chamber
pressure over the entire study range of 34 to 168 atm (500 to 2000 psia)

104



J1jewayds auLbuz Jueyadoadiuy | 3poW 1§ d4anbi4

Y3IBWYHI L1SNY¥HL I
INIgENL 1
d
g

dhnd
43INYNG3IYd

3ATYA 4400NHS

d a37009 NOILVIOWY

WA I3 $190GOY¥d NOILSNOW0D HrErex

X

_H_ € 1-4Y) 13nd ALISNIQ HOIH GO

@.I. v NI9AXO ZZZZZ
NIDOUGAH

m

JATYA 04INOD
FI141¥0

D

i e

-
S A Sl

HIT¥-1304 ﬂ&

A
AW A I

>

[

105



R

dt3ewayds auibuz juey(adoudiuay z2 apoy 25 a4nbi4

[URRERRCRr vy

YIGNVHD LSMYHL D3l
aNnigunL L
dind d

43INYNG3Y¥d  9d

3AWA NO3H) B 037007 NOILYIOGWY

e

WA 440 1nws [X]

SIoNA0Yd NOILSNEWOD Toani=r
~3AWA 0¥1H0) X e

NA9OYAAH XCKK.

&) E) I

.

A

4
a

DTADTaN 4

diid
150082
hodd

§53ﬁ\ N N, T N N N,

gh

[

IR 4 < . | U

106



V, B, Engine System Evaluations (cont.)

because the Task Il results did not show this concept to be cooling
limited. The results of the Task II, cooling evaluation provided the
necessary coolant jacket pressure drop data for use in this analysis.

Preliminary turbopump analyses were conducted initially to estab-
lish component efficiencies to b2 used in further evaluations. The main
pump speeds were evaluated as a function of pump discharge pressure within
«he bearing C and suction specific speed constraints. The number of pump
stages were selected to maintain a pump specific speed (Ng) greater than
[600 (RPM) (GPM)1/2/(FT)3/4] to get reasonable efficiencies. Pump tip
speeds and impeller diameters were calculated with the aid of Figure 53
and pump efficiency estimates were made from Figures 54 and 55 which are
based upon data in Reference 23. Results of preliminary calculations,
which formed the foundation for further power balancing, are shown on
Table XIX.

Turbine efficiencies were estimated as:

LH2 TPA - 80%
LOX TPA -~ 75%
RP-1 TPA - 75%

Pump discharge pressure requirements are shown as function of
thrust chamber pressure on Figure 56 for a thrust split of 0.5. The figure
shows that the LOX pump discharge pressure requirements are approximately
equal to those of the hydrogen TPA. A1l of the oxygen is pumped to high
pressure to meet the preburner and turbine inlet pressure requirements.
Both the hydrogen and oxygen pump discharge pressures are functions of the
thrust chamber pressure, coolant jacket pressure drop and turbine pressure
ratio requirements. The RP-1 pump discharge pressure is primarily only a
function of the chamber pressure and turbine pressure ratio. A1l of the
RP-1 is combusted in a fuel-rich preburner. Figure 56 also shows that the
cycle is not power balance limited. Therefore, a thrust chamber pressure
of 136 atm (2000 psia) was selected as a baseline for generating the
engine operating specifications.

The tripropellant engine and component Mode 1 operating specifi-
cations, for a thrust chamber pressure of 136 atm (2000 psia), are shown
on Table XX. The pressure budget for this engine which resulted from the
study quidelines and power balance analysis is shown on Table XXI. From
this table, it can be noted that the power balance is governed by the LH2
TPA turbine pressure ratio. The Mode 2 operating conditions for this engine
and components are shown on Table XXII. This preliminary design analysis
indicates that the component operating parameters for both Mode 1 and 2 are
reasonable. The pressure schedule for Mode 2 operation is shown on
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PUMP DISCHARGE PRESSURE, atm
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Figure 66. Tripropellant Engine Pump discharge Pressure Requirements
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V, B, Engine System Evaluation (cont.)

Table XXIII. Thi table shows that the oxygen-rich preburner oxygen injec-
tion pressure drop decreases from a design point 15% of the upstream pres-

sure to 8.4%. This problem could be solved by redistributing pressure d-op
between control valve and the injector. However, this solution would

result in higher Mode 1 pump discharge pressure requirements and heavier
turbomachinery.

Baseline engine weight and envelope data are also shown on
Table XX. The weights were obtained by scaling of historical component
data with thrust, pressure, surface area, dimensions, etc. Detailed com-

ponent weight breakdowns and dimensions are presented in the next section
under Task IV.

Based upon the cycle analyses and a comparison of the Mode 1
and 2 pressure schedules, the following control requirement conclusions
were reached. Preburner controls in the 0p/Hp fuel-rich preburner should
be simple orifices to minimize pressure drop requirements. Control valves
are required in the fuel and oxidizer feed lines for the 0,/H, oxidizer-
rich preburner to properly distribute flow and balance the engine in Mode 2.
Either a control valve or an orifice can be used in the oxidizer line of
the 02/RP-1 fuel-rich preburner. A hot-gas check valve is required between
the RP-1 TPA and main injector to prohibit main chamber combustion pro-
ducts from backing through the turbopump shaft and into the suction line
when the RP-1 pump is inactive (Mode 2). Main propellant shutoff valves
are placed in the lines just downstream of the turbopumps. These control
requirements have been identified on Figures 51 and 52.

The effect of thrust split upon the engine cycle power balance
was also investigated. The results of these analyses are shown on
Figures 57, 58 and 59.

Figure 57 shows the effect of thrust split upon the hydrogen
pump discharge pressure requirements. Hydrogen pump discharge pressure
requirements at thrust splits of 0.4 and 0.5 are almost equal. Fuel pump
horsepower requirements at a thrust split of 0.4 are higher but the fuel
preburner flow rate is also higher. This actually re-ults in a reduced
hydrogen pump turbine “ressure ratio at a thrust split of 0.4. A slightly
higher coolant jacket pressure drop requirement at a thrust split of 0.4
results in the small increase in pump discharge pressure at a fixed chamber
pressure. For example, at a chamber pressure of 136 atm (2000 psia), the
hydrogen pump discharge pressure requirements are 231 and 233 atm (3390
and 3420 psia) at thrust splits of 0.5 and 0.4, respectively. Coolant
Jjacket pressure drops at 136 atm (2000 psia) chamber pressure are 17.3
a?d fo atm (255 and 295 psi) at thrust splits of 0.5 and 0.4, respec-
tively.
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